Maximilian Schrapel

Maximilian Schrapel
Appelstr. 9A
30167 Hannover
Room 910
+49 (511) 762-14154


Maximilian Schrapel is a researcher in the Human-Computer Interaction Group at the University of Hanover. His field of interests are artificial intelligence and pattern recognition with the aim to create new interaction techniques between humans and computers.He is also part of the research initiative "Mobiler Mensch".

Before he started studying as communications engineer in Hannover he completed his apprenticeship as an electrician for systems and supplies in a company for satellite receiver technology. During his master studies at the University of Hanover he focused on his current research topics. After he graduated he joined the Human-Computer Interaction Group.


Full Papers

Pentelligence: Combining Pen Tip Motion and Writing Sounds for Handwritten Digit Recognition Maximilian Schrapel, Max-Ludwig Stadler, Michael Rohs Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems

Workshop Papers

Integrating Recommended Physical Activity in Everyday Mobility Maximilian Schrapel, Anne Finger, Michael Rohs Accepted Workshoppapers at the workshop on Augmented Humanity using Wearable and Mobile Devices for Health and Wellbeing at MobileHCI'18
Nowadays, wearables can easily monitor and display physical activities throughout the day. Health recommendations are often used to set daily goals, but these barely take individual requirements into account. In addition, due to limited individual adaptability, there are various life situations in which these goals are not achieved due to missing motivation or time. In this position paper we discuss in particular how health recommendations can be integrated into everyday life and what challenges arise. We also address spatial requirements that are necessary for an active lifestyle.


Wrist Compression Feedback by Pneumatic Actuation Henning Pohl, Dennis Becke, Eugen Wagner, Maximilian Schrapel, Michael Rohs CHI '15 Extended Abstracts on Human Factors in Computing Systems on - CHI EA '15
Most common forms of haptic feedback use vibration, which immediately captures the user's attention, yet is limited in the range of strengths it can achieve. Vibration feedback over extended periods also tends to be annoying. We present compression feedback, a form of haptic feedback that scales from very subtle to very strong and is able to provide sustained stimuli and pressure patterns. The demonstration may serve as an inspiration for further work in this area, applying compression feedback to generate subtle, intimate, as well as intense feedback.


International Workshop on Integrating Physical Activity and Health Aspects in Everyday Mobility Maximilian Schrapel, Anne Finger, Jochen Meyer, Michael Rohs, Johannes Schoening, Alexandra Voit Accepted Workshops at Ubicomp 2018
Everyday mobility encompasses different forms of public and private transportation and different forms of physical activity. However, in general everyday mobility does not involve substantial levels of physical activity. There are sometimes structural reasons or a lack of motivation and time to realize an active lifestyle in the context of mobility. The goal of this workshop is to investigate ways to integrate physical activity into everyday mobility in accordance with widely accepted health recommendations. We aim to explore wearable and ambient systems that sense and support active navigation as well as conceptual aspects from a variety of perspectives, such as persuasive technologies, and thus invite researchers from different disciplines to contribute their point of view by means of position papers, posters, and demonstrations. One planned outcome of this workshop is a set of design guidelines for navigation systems that explicitly consider health aspects. For the full-day workshop we aim to explore requirements and design challenges in a creative setting.